
NAG C Library Function Document

nag_dhgeqz (f08xec)

1 Purpose

nag_dhgeqz (f08xec) implements the QZ method for finding generalized eigenvalues of the real matrix
pair ðA;BÞ of order n, which is in the generalized upper Hessenberg form.

2 Specification

void nag_dhgeqz (Nag_OrderType order, Nag_JobType job, Nag_ComputeQType compq,
Nag_ComputeZType compz, Integer n, Integer ilo, Integer ihi, double a[],
Integer pda, double b[], Integer pdb, double alphar[], double alphai[],
double beta[], double q[], Integer pdq, double z[], Integer pdz, NagError *fail)

3 Description

nag_dhgeqz (f08xec) implements a single-double-shift version of the QZ method for finding the
generalized eigenvalues of the real matrix pair ðA;BÞ which is in the generalized upper Hessenberg form.
If the matrix pair ðA;BÞ is not in the generalized upper Hessenberg form, then the function nag_dgghrd
(f08wec) should be called before invoking nag_dhgeqz (f08xec).

This problem is mathematically equivalent to solving the equation

detðA� �BÞ ¼ 0:

Note that, to avoid underflow, overflow and other arithmetic problems, the generalized eigenvalues �j are

never computed explicitly by this function but defined as ratios between two computed values, �j and �j:

�j ¼ �j=�j:

The parameters �j, in general, are finite complex values and �j are finite real non-negative values.

If desired, the matrix pair ðA;BÞ may be reduced to generalized Schur form. That is, the transformed
matrix B is upper triangular and the transformed matrix A is block upper triangular, where the diagonal
blocks are either 1 by 1 or 2 by 2. The 1 by 1 blocks provide generalized eigenvalues which are real and
the 2 by 2 blocks give complex generalized eigenvalues.

The parameter job specifies two options. If job ¼ Nag Schur then the matrix pair ðA;BÞ is
simultaneously reduced to Schur form by applying one orthogonal transformation (usually called Q) on the
left and another (usually called Z) on the right. That is,

A QTAZ
B QTBZ

The 2 by 2 upper-triangular diagonal blocks of B corresponding to 2 by 2 blocks of A will be reduced to
non-negative diagonal matrices. That is, if Aðjþ 1; jÞ is non-zero, then Bðjþ 1; jÞ ¼ Bðj; jþ 1Þ ¼ 0 and
Bðj; jÞ and Bðjþ 1; jþ 1Þ will be non-negative.

If job ¼ Nag EigVals, then at each iteration, the same transformations are computed, but they are only
applied to those parts of A and b which are needed to compute � and �. This option could be used if
generalized eigenvalues are required but not generalized eigenvectors.

If job ¼ Nag Schur and compq and compz are Nag_AccumulateZ or Nag_InitZ, then the orthogonal
transformations used to reduce the pair ðA;BÞ are accumulated into the input arrays q and z. If
generalized eigenvectors are required then job must be set to Nag_Schur and if left (right) generalized
eigenvectors are to be computed then compq (compz) must be set to Nag_AccumulateZ or Nag_InitZ
and not Nag_NotZ.

If compq is set to Nag_InitQ then eigenvectors are accumulated on the identity matrix and on exit the
array q contains the left eigenvector matrix Q. However, if compq is set to Nag_AccumulateQ then the

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08xec

[NP3645/7] f08xec.1

transformations are accumulated on the user supplied matrix Q0 in array q on entry and thus on exit q
contains the matrix product QQ0. A similar convention is used for compz.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia

Moler C B and Stewart G W (1973) An algorithm for generalized matrix eigenproblems SIAM J. Numer.

Anal. 10 241–256

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

Stewart G W and Sun J-G (1990) Matrix Perturbation Theory Academic Press, London

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: job – Nag_JobType Input

On entry: specifies the operations to be performed on ðA;BÞ:
if job ¼ Nag EigVals, the matrix pair ðA;BÞ on exit might not be in the generalized Schur
form;

if job ¼ Nag Schur, the matrix pair ðA;BÞ on exit will be in the generalized Schur form.

Constraint: job ¼ Nag EigVals or Nag Schur.

3: compq – Nag_ComputeQType Input

On entry: specifies the operations to be performed on Q:

if compq ¼ Nag NotQ, the array q is unchanged;

if compq ¼ Nag AccumulateQ, the left transformation Q is accumulated on the array q;

if compq ¼ Nag InitQ, the array q is initialised to the identity matrix before the left
transformation Q is accumulated in q.

Constraint: compq ¼ Nag NotQ, Nag AccumulateQ or Nag InitQ.

4: compz – Nag_ComputeZType Input

On entry: specifies the operations to be performed on Z:

if compz ¼ Nag NotZ, the array z is unchanged;

if compz ¼ Nag AccumulateZ, the right transformation Z is accumulated on the array z;

if compz ¼ Nag InitZ, the array z is initialised to the identity matrix before the right
transformation Z is accumulated in z.

Constraint: compz ¼ Nag NotZ, Nag AccumulateZ or Nag InitZ.

f08xec NAG C Library Manual

f08xec.2 [NP3645/7]

5: n – Integer Input

On entry: n, the order of the matrices A, B, Q and Z.

Constraint: n � 0.

6: ilo – Integer Input

7: ihi – Integer Input

On entry: the indices ilo and ihi, respectively which define the upper triangular parts of A. The
submatrices Að1 : ilo � 1; 1 : ilo � 1Þ and Aðihi þ 1 : n; ihi þ 1 : nÞ are then upper triangular. These
parameters are provided by nag_dggbal (f08whc) if the matrix pair was previously balanced;
otherwise, ilo ¼ 1 and ihi ¼ n.

Constraints:

if n > 0, 1 � ilo � ihi � n;
if n ¼ 0, ilo ¼ 1 and ihi ¼ 0.

8: a½dim� – double Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ.
Where Aði; jÞ appears in this document, it refers to the array element

if order ¼ Nag ColMajor, a½ðj� 1Þ � pdaþ i� 1�;
if order ¼ Nag RowMajor, a½ði� 1Þ � pdaþ j� 1�.

On entry: the n by n upper Hessenberg matrix A. The elements below the first subdiagonal must be
set to zero. If job ¼ Nag Schur, the matrix pair ðA;BÞ will be simultaneously reduced to
generalized Schur form. If job ¼ Nag EigVals, the 1 by 1 and 2 by 2 diagonal blocks of the matrix
pair ðA;BÞ will give generalized eigenvalues but the remaining elements will be irrelevant.

9: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda � maxð1; nÞ.

10: b½dim� – double Input/Output

Note: the dimension, dim, of the array b must be at least maxð1; pdb� nÞ.
Where Bði; jÞ appears in this document, it refers to the array element

if order ¼ Nag ColMajor, b½ðj� 1Þ � pdbþ i� 1�;
if order ¼ Nag RowMajor, b½ði� 1Þ � pdbþ j� 1�.

On entry: the n by n upper triangular matrix B. The elements below the diagonal must be zero.

On exit: if job ¼ Nag Schur, the matrix pair ðA;BÞ will be simultaneously reduced to generalized
Schur form. If job ¼ Nag EigVals, the 1 by 1 and 2 by 2 diagonal blocks of the matrix pair ðA;BÞ
will give generalized eigenvalues but the remaining elements will be irrelevant.

11: pdb – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraint: pdb � maxð1; nÞ.

12: alphar½dim� – double Output

Note: the dimension, dim, of the array alphar must be at least maxð1; nÞ.
On exit: the real parts of �j, for j ¼ 1; . . . ; n.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08xec

[NP3645/7] f08xec.3

13: alphai½dim� – double Output

Note: the dimension, dim, of the array alphai must be at least maxð1; nÞ.
On exit: the imaginary parts of �j, for j ¼ 1; . . . ; n.

14: beta½dim� – double Output

Note: the dimension, dim, of the array beta must be at least maxð1;nÞ.
On exit: �j, for j ¼ 1; . . . ; n.

15: q½dim� – double Input/Output

Note: the dimension, dim, of the array q must be at least

maxð1; pdq� nÞ when compq ¼ Nag AccumulateQ or Nag InitQ;

1 when compq ¼ Nag NotQ.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix Q is stored in q½ðj� 1Þ � pdqþ i� 1�
and if order ¼ Nag RowMajor, the ði; jÞth e lement of the matr ix Q i s s tored in

q½ði� 1Þ � pdqþ j� 1�.
On entry: if compq ¼ Nag AccumulateQ, the matrix Q0. The matrix Q0 is usually the matrix Q
returned by nag_dgghrd (f08wec). If compq ¼ Nag NotQ, q is not referenced.

On exit: if compq ¼ Nag AccumulateQ, q contains the matrix product QQ0; if
compq ¼ Nag InitQ, q contains the transformation matrix Q.

16: pdq – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array q.

Constraints:

if order ¼ Nag ColMajor,
if compq ¼ Nag AccumulateQ or Nag InitQ, pdq � n;
if compq ¼ Nag NotQ, pdq � 1;

if order ¼ Nag RowMajor,
if compq ¼ Nag AccumulateQ or Nag InitQ, pdq � maxð1; nÞ;
if compq ¼ Nag NotQ, pdq � 1.

17: z½dim� – double Input/Output

Note: the dimension, dim, of the array z must be at least

maxð1; pdz� nÞ when compz ¼ Nag AccumulateZ or Nag InitZ;

1 when compz ¼ Nag NotZ.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix Z is stored in z½ðj� 1Þ � pdzþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix Z is stored in z½ði� 1Þ � pdzþ j� 1�.
On entry: if compz ¼ Nag AccumulateZ, the matrix Z0. The matrix Z0 is usually the matrix Z
returned by nag_dgghrd (f08wec). If compz ¼ Nag NotZ, z is not referenced.

On exit: if compz ¼ Nag AccumulateZ, z contains the matrix product ZZ0; if
compz ¼ Nag InitZ, z contains the transformation matrix Z.

18: pdz – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array z.

Constraints:

if order ¼ Nag ColMajor,
if compz ¼ Nag AccumulateZ or Nag InitZ, pdz � n;

f08xec NAG C Library Manual

f08xec.4 [NP3645/7]

if compz ¼ Nag NotZ, pdz � 1;

if order ¼ Nag RowMajor,
if compz ¼ Nag AccumulateZ or Nag InitZ, pdz � maxð1;nÞ;
if compz ¼ Nag NotZ, pdz � 1.

19: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

On entry, pdb ¼ hvaluei.
Constraint: pdb > 0.

On entry, pdq ¼ hvaluei.
Constraint: pdq > 0.

On entry, pdz ¼ hvaluei.
Constraint: pdz > 0.

NE_INT_2

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.
On entry, pdb ¼ hvaluei, n ¼ hvaluei.
Constraint: pdb � maxð1; nÞ.

NE_INT_3

On entry, n = hvaluei, ilo = hvaluei, ihi = hvaluei.
Constraint: if n > 0, 1 � ilo � ihi � n;
if n ¼ 0, ilo ¼ 1 and ihi ¼ 0.

NE_ENUM_INT_2

On entry, compq ¼ hvaluei, n ¼ hvaluei, pdq ¼ hvaluei.
Constraint: if compq ¼ Nag AccumulateQ or Nag InitQ, pdq � n;
if compq ¼ Nag NotQ, pdq � 1.

On entry, compz ¼ hvaluei, n ¼ hvaluei, pdz ¼ hvaluei.
Constraint: if compz ¼ Nag AccumulateZ or Nag InitZ, pdz � n;
if compz ¼ Nag NotZ, pdz � 1.

On entry, compq ¼ hvaluei, n ¼ hvaluei, pdq ¼ hvaluei.
Constraint: if compq ¼ Nag AccumulateQ or Nag InitQ, pdq � maxð1; nÞ;
if compq ¼ Nag NotQ, pdq � 1.

On entry, compz ¼ hvaluei, n ¼ hvaluei, pdz ¼ hvaluei.
Constraint: if compz ¼ Nag AccumulateZ or Nag InitZ, pdz � maxð1;nÞ;
if compz ¼ Nag NotZ, pdz � 1.

NE_CONVERGENCE

The QZ iteration did not converge and the matrix pair ðA;BÞ is not in the generalized Schur form.
The computed �i and �i should be correct for i ¼ hvaluei; . . . ; hvaluei.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08xec

[NP3645/7] f08xec.5

The QZ iteration did not converge and the matrix pair ðA;BÞ is not in the generalized Schur form.

The computation of shifts failed and the matrix pair ðA;BÞ is not in the generalized Schur form.
The computed �i and �i should be correct for i ¼ hvaluei; . . . ; hvaluei.
The computation of shifts failed and the matrix pair ðA;BÞ is not in the generalized Schur form.

An unexpected Library error has occurred.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Please consult section 4.11 of the LAPACK Users’ Guide (Anderson et al. (1999)) and Chapter 6 of
Stewart and Sun (1990), for more information.

8 Further Comments

nag_dhgeqz (f08xec) is the fifth step in the solution of the real generalized eigenvalue problem and is
called after nag_dgghrd (f08wec).

The complex analogue of this function is nag_zhgeqz (f08xsc).

9 Example

The example program computes the � and � parameters, which defines the generalized eigenvalues, of the
matrix pair ðA;BÞ given by

A ¼

1:0 1:0 1:0 1:0 1:0
2:0 4:0 8:0 16:0 32:0
3:0 9:0 27:0 81:0 243:0
4:0 16:0 64:0 256:0 1024:0
5:0 25:0 125:0 625:0 3125:0

1
CCCCA

0
BBBB@

B ¼

1:0 2:0 3:0 4:0 5:0
1:0 4:0 9:0 16:0 25:0
1:0 8:0 27:0 64:0 125:0
1:0 16:0 81:0 256:0 625:0
1:0 32:0 243:0 1024:0 3125:0

1
CCCCA

0
BBBB@

:

This requires calls to five functions: nag_dggbal (f08whc) to balance the matrix, nag_dgeqrf (f08aec) to
perform the QR factorization of B, nag_dormqr (f08agc) to apply Q to A, nag_dgghrd (f08wec) to reduce
the matrix pair to the generalized Hessenberg form and nag_dhgeqz (f08xec) to compute the eigenvalues
using the QZ algorithm.

f08xec NAG C Library Manual

f08xec.6 [NP3645/7]

9.1 Program Text

/* nag_dhgeqz (f08xec) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, ihi, ilo, irows, j, n, pda, pdb;
Integer alpha_len, beta_len, scale_len, tau_len;
Integer exit_status=0;

NagError fail;
Nag_OrderType order;
/* Arrays */
double *a=0, *alphai=0, *alphar=0, *b=0, *beta=0, *lscale=0;
double *q=0, *rscale=0, *tau=0, *z=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08xec Example Program Results\n\n");
/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);

#ifdef NAG_COLUMN_MAJOR
pda = n;
pdb = n;

#else
pda = n;
pdb = n;

#endif
alpha_len = n;
beta_len = n;
scale_len = n;
tau_len = n;

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, double)) ||

!(alphai = NAG_ALLOC(alpha_len, double)) ||
!(alphar = NAG_ALLOC(alpha_len, double)) ||
!(b = NAG_ALLOC(n * n, double)) ||
!(beta = NAG_ALLOC(beta_len, double)) ||
!(lscale = NAG_ALLOC(scale_len, double)) ||
!(q = NAG_ALLOC(1 * 1, double)) ||
!(rscale = NAG_ALLOC(scale_len, double)) ||
!(tau = NAG_ALLOC(tau_len, double)) ||
!(z = NAG_ALLOC(1 * 1, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08xec

[NP3645/7] f08xec.7

/* READ matrix A from data file */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf("%lf", &A(i,j));
}

Vscanf("%*[^\n] ");

/* READ matrix B from data file */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf("%lf", &B(i,j));
}

Vscanf("%*[^\n] ");
/* Balance matrix pair (A,B) */
f08whc(order, Nag_DoBoth, n, a, pda, b, pdb, &ilo, &ihi, lscale,

rscale, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08whc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Matrix A after balancing */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, a, pda,

"Matrix A after balancing", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\n");

/* Matrix B after balancing */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, b, pdb,

"Matrix B after balancing", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\n");

/* Reduce B to triangular form using QR */
irows = ihi + 1 - ilo;
f08aec(order, irows, irows, &B(ilo, ilo), pdb, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08aec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Apply the orthogonal transformation to matrix A */
f08agc(order, Nag_LeftSide, Nag_Trans, irows, irows, irows,

&B(ilo, ilo), pdb, tau, &A(ilo, ilo), pda, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08agc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute the generalized Hessenberg form of (A,B) */
f08wec(order, Nag_NotQ, Nag_NotZ, irows, 1, irows, &A(ilo, ilo), pda,

&B(ilo, ilo), pdb, q, 1, z, 1, &fail);

f08xec NAG C Library Manual

f08xec.8 [NP3645/7]

if (fail.code != NE_NOERROR)
{

Vprintf("Error from f08wec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Matrix A in generalized Hessenberg form */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, a, pda,

"Matrix A in Hessenberg form", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\n");
/* Matrix B in generalized Hessenberg form */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, b, pdb,

"Matrix B is triangular", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute the generalized Schur form */
f08xec(order, Nag_EigVals, Nag_NotQ, Nag_NotZ, n, ilo, ihi, a, pda,

b, pdb, alphar, alphai, beta, q, 1, z, 1, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08xec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print the generalized eigenvalues */
Vprintf("\n Generalized eigenvalues\n");
for (i = 1; i <= n; ++i)

{
if (beta[i-1] != 0.0)

{
Vprintf(" %4ld (%7.3f,%7.3f)\n", i,

alphar[i-1]/beta[i-1], alphai[i-1]/beta[i-1]);
}

else
Vprintf(" %4ldEigenvalue is infinite\n", i);

}
END:
if (a) NAG_FREE(a);
if (alphai) NAG_FREE(alphai);
if (alphar) NAG_FREE(alphar);
if (b) NAG_FREE(b);
if (beta) NAG_FREE(beta);
if (lscale) NAG_FREE(lscale);
if (q) NAG_FREE(q);
if (rscale) NAG_FREE(rscale);
if (tau) NAG_FREE(tau);
if (z) NAG_FREE(z);

return exit_status;
}

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08xec

[NP3645/7] f08xec.9

9.2 Program Data

f08xec Example Program Data
5 :Value of N

1.00 1.00 1.00 1.00 1.00
2.00 4.00 8.00 16.00 32.00
3.00 9.00 27.00 81.00 243.00
4.00 16.00 64.00 256.00 1024.00
5.00 25.00 125.00 625.00 3125.00 :End of matrix A
1.00 2.00 3.00 4.00 5.00
1.00 4.00 9.00 16.00 25.00
1.00 8.00 27.00 64.00 125.00
1.00 16.00 81.00 256.00 625.00
1.00 32.00 243.00 1024.00 3125.00 :End of matrix B

9.3 Program Results

f08xec Example Program Results

Matrix A after balancing
1 2 3 4 5

1 1.0000 1.0000 0.1000 0.1000 0.1000
2 2.0000 4.0000 0.8000 1.6000 3.2000
3 0.3000 0.9000 0.2700 0.8100 2.4300
4 0.4000 1.6000 0.6400 2.5600 10.2400
5 0.5000 2.5000 1.2500 6.2500 31.2500

Matrix B after balancing
1 2 3 4 5

1 1.0000 2.0000 0.3000 0.4000 0.5000
2 1.0000 4.0000 0.9000 1.6000 2.5000
3 0.1000 0.8000 0.2700 0.6400 1.2500
4 0.1000 1.6000 0.8100 2.5600 6.2500
5 0.1000 3.2000 2.4300 10.2400 31.2500

Matrix A in Hessenberg form
1 2 3 4 5

1 -2.1898 -0.3181 2.0547 4.7371 -4.6249
2 -0.8395 -0.0426 1.7132 7.5194 -17.1850
3 0.0000 -0.2846 -1.0101 -7.5927 26.4499
4 0.0000 0.0000 0.0376 1.4070 -3.3643
5 0.0000 0.0000 0.0000 0.3813 -0.9937

Matrix B is triangular
1 2 3 4 5

1 -1.4248 -0.3476 2.1175 5.5813 -3.9269
2 0.0000 -0.0782 0.1189 8.0940 -15.2928
3 0.0000 0.0000 1.0021 -10.9356 26.5971
4 0.0000 0.0000 0.0000 0.5820 -0.0730
5 0.0000 0.0000 0.0000 0.0000 0.5321

Generalized eigenvalues
1 (-2.437, 0.000)
2 (0.607, 0.795)
3 (0.607, -0.795)
4 (1.000, 0.000)
5 (-0.410, 0.000)

f08xec NAG C Library Manual

f08xec.10 (last) [NP3645/7]

	f08xec
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	job
	compq
	compz
	n
	ilo
	ihi
	a
	pda
	b
	pdb
	alphar
	alphai
	beta
	q
	pdq
	z
	pdz
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_ENUM_INT_2
	NE_CONVERGENCE
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

