f08 — Least-squares and Eigenvalue Problems (LAPACK) f08xec

NAG C Library Function Document

nag dhgeqz (f08xec)

1 Purpose

nag_dhgeqz (f08xec) implements the ()7 method for finding generalized eigenvalues of the real matrix
pair (A, B) of order n, which is in the generalized upper Hessenberg form.

2 Specification

void nag_dhgeqz (Nag_OrderType order, Nag_JobType job, Nag_ComputeQType compq,
Nag_ComputeZType compz, Integer n, Integer ilo, Integer ihi, double a[],
Integer pda, double b[], Integer pdb, double alphar[], double alphail[],
double beta[], double q[], Integer pdq, double z[], Integer pdz, NagError *fail)

3 Description

nag_dhgeqz (f08xec) implements a single-double-shift version of the ()Z method for finding the
generalized eigenvalues of the real matrix pair (A, B) which is in the generalized upper Hessenberg form.
If the matrix pair (A4, B) is not in the generalized upper Hessenberg form, then the function nag_dgghrd
(f08wec) should be called before invoking nag_dhgeqz (f08xec).

This problem is mathematically equivalent to solving the equation
det(A — AB) = 0.

Note that, to avoid underflow, overflow and other arithmetic problems, the generalized eigenvalues \; are
never computed explicitly by this function but defined as ratios between two computed values, «; and (3;:

The parameters v, in general, are finite complex values and (3; are finite real non-negative values.

If desired, the matrix pair (A, B) may be reduced to generalized Schur form. That is, the transformed
matrix B is upper triangular and the transformed matrix A is block upper triangular, where the diagonal
blocks are either 1 by 1 or 2 by 2. The 1 by 1 blocks provide generalized eigenvalues which are real and
the 2 by 2 blocks give complex generalized eigenvalues.

The parameter job specifies two options. If job = Nag_Schur then the matrix pair (A, B) is
simultaneously reduced to Schur form by applying one orthogonal transformation (usually called @)) on the
left and another (usually called Z) on the right. That is,

A—QTAz
B—Q'Bz

The 2 by 2 upper-triangular diagonal blocks of B corresponding to 2 by 2 blocks of A will be reduced to
non-negative diagonal matrices. That is, if A(j + 1, 7) is non-zero, then B(j+ 1,5) =B(j,j+ 1) = 0 and
B(j,7) and B(j+ 1,5+ 1) will be non-negative.

If job = Nag_EigVals, then at each iteration, the same transformations are computed, but they are only
applied to those parts of A and b which are needed to compute « and 5. This option could be used if
generalized eigenvalues are required but not generalized eigenvectors.

If job = Nag_Schur and compq and compz are Nag_AccumulateZ or Nag InitZ, then the orthogonal
transformations used to reduce the pair (A, B) are accumulated into the input arrays q and z. If
generalized eigenvectors are required then job must be set to Nag Schur and if left (right) generalized
eigenvectors are to be computed then compq (compz) must be set to Nag AccumulateZ or Nag InitZ
and not Nag NotZ.

If compq is set to Nag InitQ then eigenvectors are accumulated on the identity matrix and on exit the
array q contains the left eigenvector matrix). However, if compq is set to Nag_AccumulateQ then the

[NP3645/7] f08xec.1

f08xec NAG C Library Manual

transformations are accumulated on the user supplied matrix @), in array q on entry and thus on exit q
contains the matrix product Q@)y. A similar convention is used for compz.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia

Moler C B and Stewart G W (1973) An algorithm for generalized matrix eigenproblems SIAM J. Numer.
Anal. 10 241-256

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

Stewart G W and Sun J-G (1990) Matrix Perturbation Theory Academic Press, London

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: job — Nag JobType Input
On entry: specifies the operations to be performed on (A, B):

if job = Nag_EigVals, the matrix pair (A, B) on exit might not be in the generalized Schur
form;

if job = Nag_Schur, the matrix pair (A, B) on exit will be in the generalized Schur form.

Constraint: job = Nag_EigVals or Nag_Schur.

3: compq — Nag ComputeQType Input
On entry: specifies the operations to be performed on Q:
if compq = Nag_NotQ, the array q is unchanged;
if compq = Nag_AccumulateQ, the left transformation () is accumulated on the array q;

if compq = Nag_InitQ, the array q is initialised to the identity matrix before the left
transformation () is accumulated in q.

Constraint: compq = Nag_NotQ, Nag_AccumulateQ or Nag_InitQ.

4: compz — Nag ComputeZType Input
On entry: specifies the operations to be performed on Z:
if compz = Nag _NotZ, the array z is unchanged;
if compz = Nag_AccumulateZ, the right transformation Z is accumulated on the array z;

if compz = Nag_InitZ, the array z is initialised to the identity matrix before the right
transformation Z is accumulated in z.

Constraint: compz = Nag_NotZ, Nag_AccumulateZ or Nag_InitZ.

f08xec.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08xec

10:

11:

12:

n — Integer Input
On entry: n, the order of the matrices A, B, () and Z.

Constraint: n > 0.

ilo — Integer Input
ihi — Integer Input

On entry: the indices i;, and 1i,;, respectively which define the upper triangular parts of A. The
submatrices A(1 :4;, — 1,1 :4;, — 1) and A(iy; + 1 : n,iy + 1 : n) are then upper triangular. These
parameters are provided by nag dggbal (f08whc) if the matrix pair was previously balanced;
otherwise, ilo = 1 and ihi = n.

Constraints:

if n >0, 1 <ilo <ihi <n;

if n =0, ilo =1 and ihi = 0.
a[dim] — double Input/Output
Note: the dimension, dim, of the array a must be at least max(1, pda x n).
Where A(i,j) appears in this document, it refers to the array element

if order = Nag_ColMajor, a[(j— 1) x pda—+i—1];

if order = Nag_RowMajor, a[(i — 1) x pda + j — 1].
On entry: the n by n upper Hessenberg matrix A. The elements below the first subdiagonal must be
set to zero. If job = Nag_Schur, the matrix pair (A, B) will be simultaneously reduced to
generalized Schur form. If job = Nag_EigVals, the 1 by 1 and 2 by 2 diagonal blocks of the matrix
pair (A, B) will give generalized eigenvalues but the remaining elements will be irrelevant.
pda — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda > max(1,n).

b[dim] — double Input/Output
Note: the dimension, dim, of the array b must be at least max(1, pdb x n).
Where B(i, j) appears in this document, it refers to the array element
if order = Nag_ColMajor, b[(j — 1) x pdb +i — 1];
if order = Nag_RowMajor, b[(i — 1) x pdb + j — 1].
On entry: the n by n upper triangular matrix B. The elements below the diagonal must be zero.

On exit: if job = Nag_Schur, the matrix pair (A, B) will be simultaneously reduced to generalized
Schur form. If job = Nag_EigVals, the 1 by 1 and 2 by 2 diagonal blocks of the matrix pair (A, B)
will give generalized eigenvalues but the remaining elements will be irrelevant.

pdb — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraint: pdb > max(1,n).

alphar[dim| — double Output
Note: the dimension, dim, of the array alphar must be at least max(1,n).

On exit: the real parts of «, for j=1,...,n.

[NP3645/7] f08xec.3

f08xec NAG C Library Manual

13: alphai[dim] — double Output
Note: the dimension, dim, of the array alphai must be at least max(1,n).
On exit: the imaginary parts of o, for j=1,...,n.

14: beta[dim] — double Output

Note: the dimension, dim, of the array beta must be at least max(1,n).

On exit. 3;, for j=1,...,n.

15: q[dim] — double Input/Output

Note: the dimension, dim, of the array q must be at least

max(1,pdq x n) when compq = Nag_AccumulateQ or Nag InitQ;

1 when compq = Nag_NotQ.
If order = Nag_ColMajor, the (4, j)th element of the matrix @ is stored in q[(j — 1) x pdq + ¢ — 1]
and if order = Nag RowMajor, the (i,j)th element of the matrix @ is stored in
q((i —1) x pdq +j — 1].

On entry: if compq = Nag_AccumulateQ, the matrix (),. The matrix (), is usually the matrix @)
returned by nag dgghrd (f08wec). If compq = Nag_NotQ, q is not referenced.

On exit: if compq = Nag AccumulateQQ, q contains the matrix product QQ,; if
compq = Nag_InitQ, q contains the transformation matrix Q.

16: pdq — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array q.
Constraints:

if order = Nag_ColMajor,
if compq = Nag_AccumulateQ or Nag_ InitQ, pdq > n;
if compq = Nag_NotQ, pdq > 1;

if order = Nag_RowMajor,
if compq = Nag_AccumulateQ or Nag InitQ, pdq > max(1,n);
if compq = Nag_NotQ, pdq > 1.

17: z[dim] — double Input/Output

Note: the dimension, dim, of the array z must be at least
max (1, pdz x n) when compz = Nag_AccumulateZ or Nag InitZ;
1 when compz = Nag_NotZ.

If order = Nag_ColMajor, the (4, j)th element of the matrix Z is stored in z[(j — 1) x pdz + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix Z is stored in z[(i — 1) x pdz + j — 1].

On entry: if compz = Nag_AccumulateZ, the matrix Z,. The matrix Z, is usually the matrix Z
returned by nag dgghrd (f08wec). If compz = Nag NotZ, z is not referenced.

On exit: if compz = Nag AccumulateZ, z contains the matrix product ZZ,; if
compz = Nag_InitZ, z contains the transformation matrix 7.

18: pdz — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array z.
Constraints:

if order = Nag_ColMajor,
if compz = Nag_AccumulateZ or Nag_InitZ, pdz > n;

f08xec.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08xec

if compz = Nag NotZ, pdz > 1;
if order = Nag_RowMajor,
if compz = Nag_AccumulateZ or Nag_InitZ, pdz > max(1,n);
if compz = Nag NotZ, pdz > 1.
19: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

On entry, pdq = (value).
Constraint: pdq > 0.

On entry, pdz = (value).
Constraint: pdz > 0.
NE_INT_2

On entry, pda = (value), n = (value).
Constraint: pda > max(1,n).

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

NE_INT 3

On entry, n = (value), ilo = {value), ihi = (value).
Constraint: if n > 0, 1 <ilo < ihi < n;
if n =0, ilo =1 and ihi = 0.

NE_ENUM_INT 2

On entry, compq = (value), n = (value), pdq = (value).
Constraint: if compq = Nag_AccumulateQ or Nag_ InitQ, pdq > n;
if compq = Nag_NotQ, pdq > 1.

On entry, compz = (value), n = (value), pdz = (value).
Constraint: if compz = Nag_AccumulateZ or Nag_ InitZ, pdz > n;
if compz = Nag NotZ, pdz > 1.

On entry, compq = (value), n = (value), pdq = (value).
Constraint: if compq = Nag_AccumulateQ or Nag InitQ, pdq > max(1,n);
if compq = Nag_NotQ, pdq > 1.

On entry, compz = {value), n = (value), pdz = (value).
Constraint: if compz = Nag_AccumulateZ or Nag InitZ, pdz > max(1,n);
if compz = Nag NotZ, pdz > 1.

NE_CONVERGENCE

The Q7 iteration did not converge and the matrix pair (A, B) is not in the generalized Schur form.
The computed «; and §; should be correct for ¢ = (value), ..., (value).

[NP3645/7] f08xec.5

f08xec NAG C Library Manual

The Q7 iteration did not converge and the matrix pair (A, B) is not in the generalized Schur form.

The computation of shifts failed and the matrix pair (A, B) is not in the generalized Schur form.
The computed «; and f3; should be correct for ¢ = (value), ..., (value).

The computation of shifts failed and the matrix pair (A, B) is not in the generalized Schur form.

An unexpected Library error has occurred.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Please consult section 4.11 of the LAPACK Users’ Guide (Anderson et al. (1999)) and Chapter 6 of
Stewart and Sun (1990), for more information.

8 Further Comments

nag_dhgeqz (f08xec) is the fifth step in the solution of the real generalized eigenvalue problem and is
called after nag_dgghrd (f08wec).

The complex analogue of this function is nag_zhgeqz (f08xsc).

9 Example

The example program computes the o and (parameters, which defines the generalized eigenvalues, of the
matrix pair (A, B) given by

1.0 1.0 1.0 1.0 1.0
20 4.0 80 16.0 32.0
A=130 90 270 810 243.0
4.0 160 64.0 256.0 1024.0
5.0 25.0 125.0 625.0 3125.0

1.0 2.0 3.0 4.0 5.0
1.0 4.0 9.0 16.0 25.0
B=1]110 8.0 270 64.0 125.0
1.0 16.0 81.0 256.0 625.0
1.0 32.0 243.0 1024.0 3125.0

This requires calls to five functions: nag_dggbal (f08whc) to balance the matrix, nag_dgeqrf (f08aec) to
perform the QR factorization of B, nag_dormqr (f08agc) to apply @ to A, nag dgghrd (f08wec) to reduce
the matrix pair to the generalized Hessenberg form and nag_dhgeqz (f08xec) to compute the eigenvalues
using the (QZ algorithm.

f08xec.6 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

9.1 Program Text

/* nag_dhgeqz (f08xec) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.

*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)

{
/* Scalars *x/

Integer i, ihi, ilo, irows, j, n, pda, pdb;
Integer alpha_len, beta_len, scale_len, tau_len;

Integer exit_status=0;

NagError fail;
Nag_OrderType order;
/* Arrays */

double *a=0, *alphai=0, *alphar=0, *b=0, *beta=0,

double *g=0, *rscale=0, *tau=0, *z=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) al(J-1)*pda
#define B(I,J) b[(J-1)+*pdb
order = Nag_ColMajor;
#else
#define A(I,J) al(I-1)*pda
#define B(I,J) bl (I-1)=*pdb
order = Nag_RowMajor;
#endif

+ o+
H H
11
e

+ +
g
11
s

INIT_FAIL(fail);

Vprintf ("£08xec Example Program Results\n\n");

/* Skip heading in data file */

Vscanf ("s*x["\n] ");

Vscanf ("$1d%s*[*\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pda = n;

pdb = n;
#else

pda = n;

pdb = n;
#endif

alpha_len = nj;
beta_len = n;
scale_len = n;
tau_len = n;

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, double)) ||

alphai = NAG_ALLOC(alpha_len, double))
alphar = NAG_ALLOC(alpha_len, double))

b = NAG_ALLOC(n * n, double)) ||
beta = NAG_ALLOC(beta_len, double))

q = NAG_ALLOC(1 * 1, double)) ||

rscale = NAG_ALLOC(scale_1len, double))

!

L

!

L

! (lscale = NAG_ALLOC(scale_len, double
|

X

! (tau = NAG_ALLOC(tau_len, double)) ||
!

z = NAG_ALLOC(1 * 1, double)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

[NP3645/7]

*1scale=0;

f08xec

f08xec.7

f08xec NAG C Library Manual

/* READ matrix A from data file */
for (i = 1; i <= n; ++1)
{
for (j = 1; j <= n; ++3j)
Vscanf ("s1f", &A(i,3));
}
Vscanf ("$*[*\n] ");

/* READ matrix B from data file */
for (i = 1; i <= n; ++1)

{

for (j = 1; j <= n; ++3)
Vscanf ("$1f", &B(i,3));

}
Vscanf ("s*["\n] ");
/* Balance matrix pair (A,B) */
f08whc (order, Nag _DoBoth, n, a, pda, b, pdb, &ilo, &ihi, 1lscale,

rscale, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08whc.\n%s\n", fail.message);
exit_status = 1;
goto END;
3

/* Matrix A after balancing */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, a, pda,
"Matrix A after balancing", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

Vprintf ("\n") ;

/* Matrix B after balancing =*/
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, b, pdb,
"Matrix B after balancing", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from xO04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
3

Vprintf ("\n") ;

/* Reduce B to triangular form using QR */

irows = ihi + 1 - ilo;
fO8aec(order, irows, irows, &B(ilo, ilo), pdb, tau, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08aec.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Apply the orthogonal transformation to matrix A =*/
fO08agc(order, Nag_LeftSide, Nag_Trans, irows, irows, irows,
&B(ilo, ilo), pdb, tau, &A(ilo, ilo), pda, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08agc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Compute the generalized Hessenberg form of (A,B) */
fO8wec(order, Nag_NotQ, Nag_NotZz, irows, 1, irows, &A(ilo, ilo), pda,
&B(ilo, ilo), pdb, g, 1, z, 1, &fail);

f08xec.8 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08xec

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8wec.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Matrix A in generalized Hessenberg form */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, a, pda,
"Matrix A in Hessenberg form", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf ("\n") ;
/* Matrix B in generalized Hessenberg form */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, b, pdb,
"Matrix B is triangular", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Compute the generalized Schur form =*/
f08xec(order, Nag_EigVals, Nag_NotQ, Nag_NotZ, n, ilo, ihi, a, pda,
b, pdb, alphar, alphai, beta, gq, 1, z, 1, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08xec.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print the generalized eigenvalues */
Vprintf ("\n Generalized eigenvalues\n");

for (i = 1; 1 <= n; ++1)
{
if (betali-1] != 0.0)
{
Vprintf (" %41d (%$7.3f,%7.3f)\n", 1,
alphar[i-1]/betali-1], alphaili-1]/betali-1]);
b
else
Vprintf (" %41dEigenvalue is infinite\n", 1i);
}
END:
if (a) NAG_FREE(a);
if (alphai) NAG_FREE (alphai);
if (alphar) NAG_FREE (alphar) ;
if (b) NAG_FREE(b);
if (beta) NAG_FREE (beta);
if (lscale) NAG_FREE (lscale);
if (g) NAG_FREE(q);
if (rscale) NAG_FREE (rscale);
if (tau) NAG_FREE (tau);
if (z) NAG_FREE(z);

return exit_status;

[NP3645/7] f08xec.9

f08xec

9.2 Program Data

f08xec Example Program Data

5
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

PR RR RPN WN R

N =
NOYODDNUIO O D

w =

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

9.3 Program Results

f08xec Example Program Results

1.
8.
27.
64
125.
3.
9.
27.
81.
243.

Matrix A after balancing

1 2
1 1.0000 1.0000
2 2.0000 4.0000
3 0.3000 0.9000
4 0.4000 1.6000
5 0.5000 2.5000
Matrix B after balancing
1 2
1 1.0000 2.0000
2 1.0000 4.0000
3 0.1000 0.8000
4 0.1000 1.6000
5 0.1000 3.2000
Matrix A in Hessenberg form
1 2
1 -2.1898 -0.3181
2 -0.8395 -0.0426
3 0.0000 -0.2846
4 0.0000 0.0000
5 0.0000 0.0000
Matrix B is triangular
1 2
1 -1.4248 -0.3476
2 0.0000 -0.0782
3 0.0000 0.0000
4 0.0000 0.0000
5 0.0000 0.0000
Generalized eigenvalues
(-2.437, 0.000
(0.607, 0.795
(0.607, -0.795
(1.000, 0.000
(-0.410, 0.000

1

2
3
4
5

00
00
00

.00

00
00
00
00
00
00

L OOOOoO

NO O OO

OO RrOonN

16.
81.
256
625.

16.
64.
256.
1024.

.1000
.8000
.2700
.6400
.2500

.3000
.9000
.2700
.8100
.4300

.0547
.7132
.0101
.0376
.0000

.1175
.1189
.0021
.0000
.0000

.00

00
00

.00

.00

00
00
00
00

32.
243.
1024.
3125.

25.
125.
625.

3125.

.1000
.6000
.8100
.5600
.2500

AONORO

.4000
.6000
.6400
.5600
.2400

ONORr O

4.7371
7.5194
-7.5927
1.4070
0.3813

5.5813
8.0940
-10.9356
0.5820
0.0000

.00

00
00
00

.00

00
00
00
00

w =
P ONWO

RPOoORNDO

-4.
-17.
26.
-3.
-0.

-3.
-15.
26.
.0730
.5321

NAG C Library Manual

:Value of N

.1000
.2000
.4300
.2400
.2500

.5000
.5000
.2500
.2500
.2500

6249
1850
4499
3643
9937

9269
2928
5971

:End of matrix A

:End of matrix B

J08xec.10 (last)

[NP3645/7]

	f08xec
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	job
	compq
	compz
	n
	ilo
	ihi
	a
	pda
	b
	pdb
	alphar
	alphai
	beta
	q
	pdq
	z
	pdz
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_ENUM_INT_2
	NE_CONVERGENCE
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

